Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.217
Filtrar
1.
J Agric Food Chem ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646869

RESUMO

Limosilactobacillus reuteri (L. reuteri) is an efficacious probiotic that could reduce inflammation and prevent metabolic disorders. Here, we innovatively found that Polygonatum kingianum polysaccharides (PKP) promoted proliferation and increased stability of L. reuteri WX-94 (a probiotic strain showing anti-inflammation potentials) in simulated digestive fluids in vitro. PKP was composed of galactose, glucose, mannose, and arabinose. The cell-free supernatant extracted from L. reuteri cultured with PKP increased ABTS•+, DPPH•, and FRAP scavenging capacities compared with the supernatant of the medium without PKP and increased metabolites with health-promoting activities, e.g., 3-phenyllactic acid, indole-3-lactic acid, indole-3-carbinol, and propionic acid. Moreover, PKP enhanced alleviating effects of heat-inactivated L. reuteri on high-fat-high-sucrose-induced liver injury in rats via reducing inflammation and regulating expressions of protein and genes involved in fatty acid metabolism (such as HIF1-α, FAßO, CPT1, and AMPK) and fatty acid profiles in liver. Such benefits correlated with its prominent effects on enriching Lactobacillus and short-chain fatty acids while reducing Dubosiella, Fusicatenilacter, Helicobacter, and Oscillospira. Our work provides novel insights into the probiotic property of PKP and emphasizes the great potential of the inactivated L. reuteri cultured with PKP in contracting unhealthy diet-induced liver dysfunctions and gut dysbacteriosis.

2.
Seizure ; 117: 275-283, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38579502

RESUMO

OBJECTIVE: Accurate detection of focal cortical dysplasia (FCD) through magnetic resonance imaging (MRI) plays a pivotal role in the preoperative assessment of epilepsy. The integration of multimodal imaging has demonstrated substantial value in both diagnosing FCD and devising effective surgical strategies. This study aimed to enhance MRI post-processing by incorporating positron emission tomography (PET) analysis. We sought to compare the diagnostic efficacy of diverse image post-processing methodologies in patients presenting MRI-negative FCD. METHODS: In this retrospective investigation, we assembled a cohort of patients with negative preoperative MRI results. T1-weighted volumetric sequences were subjected to morphometric analysis program (MAP) and composite parametric map (CPM) post-processing techniques. We independently co-registered images derived from various methods with PET scans. The alignment was subsequently evaluated, and its correlation was correlated with postoperative seizure outcomes. RESULTS: A total of 41 patients were enrolled in the study. In the PET-MAP(p = 0.0189) and PET-CPM(p = 0.00041) groups, compared with the non-overlap group, the overlap group significantly associated with better postoperative outcomes. In PET(p = 0.234), CPM(p = 0.686) and MAP(p = 0.672), there is no statistical significance between overlap and seizure-free outcomes. The sensitivity of using the CPM alone outperformed the MAP (0.65 vs 0.46). The use of PET-CPM demonstrated superior sensitivity (0.96), positive predictive value (0.83), and negative predictive value (0.91), whereas the MAP displayed superior specificity (0.71). CONCLUSIONS: Our findings suggested a superiority in sensitivity of CPM in detecting potential FCD lesions compared to MAP, especially when it is used in combination with PET for diagnosis of MRI-negative epilepsy patients. Moreover, we confirmed the superiority of synergizing metabolic imaging (PET) with quantitative maps derived from structural imaging (MAP or CPM) to enhance the identification of subtle epileptogenic zones (EZs). This study serves to illuminate the potential of integrated multimodal techniques in advancing our capability to pinpoint elusive pathological features in epilepsy cases.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38641368

RESUMO

BACKGROUND: Rapid eye movement (REM) sleep behaviour disorder (RBD) is one of the most common sleep problems and represents a key prodromal marker in Parkinson's disease (PD). It remains unclear whether and how basal ganglia nuclei, structures that are directly involved in the pathology of PD, are implicated in the occurrence of RBD. METHOD: Here, in parallel with whole-night video polysomnography, we recorded local field potentials from two major basal ganglia structures, the globus pallidus internus and subthalamic nucleus, in two cohorts of patients with PD who had varied severity of RBD. Basal ganglia oscillatory patterns during RBD and REM sleep without atonia were analysed and compared with another age-matched cohort of patients with dystonia that served as controls. RESULTS: We found that beta power in both basal ganglia nuclei was specifically elevated during REM sleep without atonia in patients with PD, but not in dystonia. Basal ganglia beta power during REM sleep positively correlated with the extent of atonia loss, with beta elevation preceding the activation of chin electromyogram activities by ~200 ms. The connectivity between basal ganglia beta power and chin muscular activities during REM sleep was significantly correlated with the clinical severity of RBD in PD. CONCLUSIONS: These findings support that basal ganglia activities are associated with if not directly contribute to the occurrence of RBD in PD. Our study expands the understanding of the role basal ganglia played in RBD and may foster improved therapies for RBD by interrupting the basal ganglia-muscular communication during REM sleep in PD.

4.
J Nutr Biochem ; : 109649, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642842

RESUMO

Obesity and its related metabolic diseases bring great challenges to public health. In-depth understanding on the efficacy of weight-loss interventions is critical for long-term weight control. Our study demonstrated the comparable efficacy of exercise (EX), intermittent fasting (IF), or the change of daily diet from an unhealthy to a normal chow (DR) for weight reduction, but largely divergently affected metabolic status and transcriptome of subcutaneous fat, scapular brown fat, skeletal muscles and liver in high-fat-high-fructose diet (HFHF) induced obese mice. EX and IF reduced systematic inflammation, improved glucose and lipid metabolism in liver and muscle, and amino acid metabolism and thermogenesis in adipose tissues. EX exhibited broad regulatory effects on TCA cycle, carbon metabolism, thermogenesis, propanoate-, fatty acid and amino acid metabolism across multiple tissues. IF prominently affected genes involved in mitophagy and autophagy in adipose tissues and core genes involved in butanoate metabolism in liver. DR however failed to improve metabolic homeostasis and biological dysfunctions in obese mice. Notably, by exploring potential inter-organ communication, we identified an obesity-resistant-like gene profile that were strongly correlated with HFHF induced metabolic derangements and could predict the degree of weight regain induced by the follow-up HFHF diet. Among them, 12 genes (e.g., Gdf15, Tfrc, Cdv3, Map2k4 and Nqo1) were causally associated with human metabolic traits, i.e., BMI, body fat mass, HbA1C, fasting glucose and cholesterol. Our findings provide critical groundwork for improved understanding the impacts of weight-loss interventions on host metabolism. The identified genes predicting weight regain may be considered regulatory targets for improving the long-term weight control.

5.
Front Neurol ; 15: 1345705, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628697

RESUMO

Introduction: The ε4 allele of the apolipoprotein E gene (APOE4) is expressed abundantly in both the brain and peripheral circulation as a genetic risk factor for Alzheimer's disease (AD). Cerebral blood flow (CBF) dysfunction is an essential feature of AD, and the liver plays an important role in the pathogenesis of dementia. However, the associations of APOE4 with CBF and liver function markers in patients with cognitive impairment remains unclear. We aimed to evaluate the associations of APOE4 with CBF measured by arterial spin labeling (ASL) magnetic resonance imaging (MRI) and serum liver function markers in participants who were diagnosed with cognitive impairment. Methods: Fourteen participants with AD and sixteen with amnestic mild cognitive impairment (MCI) were recruited. In addition to providing comprehensive clinical information, all patients underwent laboratory tests and MRI. All participants were divided into carriers and noncarriers of the ε4 allele, and T-tests and Mann-Whitney U tests were used to observe the differences between APOE4 carriers and noncarriers in CBF and liver function markers. Results: Regarding regional cerebral blood flow (rCBF), APOE4 carriers showed hyperperfusion in the bilateral occipital cortex, bilateral thalamus, and left precuneus and hypoperfusion in the right lateral temporal cortex when compared with noncarriers. Regarding serum liver function markers, bilirubin levels (including total, direct, and indirect) were lower in APOE4 carriers than in noncarriers. Conclusion: APOE4 exerts a strong effect on CBF dysfunction by inheritance, representing a risk factor for AD. APOE4 may be related to bilirubin metabolism, potentially providing specific neural targets for the diagnosis and treatment of AD.

6.
Front Immunol ; 15: 1379853, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650937

RESUMO

Introduction: Macrophages are an important component of innate immunity and involved in the immune regulation of multiple diseases. The functional diversity and plasticity make macrophages to exhibit different polarization phenotypes after different stimuli. During tumor progression, the M2-like polarized tumor-associated macrophages (TAMs) promote tumor progression by assisting immune escape, facilitating tumor cell metastasis, and switching tumor angiogenesis. Our previous studies demonstrated that functional remodeling of TAMs through engineered-modifying or gene-editing provides the potential immunotherapy for tumor. However, lack of proliferation capacity and maintained immune memory of infused macrophages restricts the application of macrophage-based therapeutic strategies in the repressive tumor immune microenvironment (TIME). Although J2 retrovirus infection enabled immortalization of bone marrow-derived macrophages (iBMDMs) and facilitated the mechanisms exploration and application, little is known about the phenotypic and functional differences among multi kinds of macrophages. Methods: HE staining was used to detect the biosafety of iBMDMs, and real-time quantitative PCR, immunofluorescence staining, and ELISA were used to detect the polarization response and expression of chemokines in iBMDMs. Flow cytometry, scratch assay, real-time quantitative PCR, and crystal violet staining were used to analyze its phagocytic function, as well as its impact on tumor cell migration, proliferation, and apoptosis. Not only that, the inhibitory effect of iBMDMs on tumor growth was detected through subcutaneous tumor loading, while the tumor tissue was paraffin sectioned and flow cytometry was used to detect its impact on the tumor microenvironment. Results: In this study, we demonstrated iBMDMs exhibited the features of rapid proliferation and long-term survival. We also compared iBMDMs with RAW264.7 cell line and mouse primary BMDMs with in vitro and in vivo experiments, indicating that the iBMDMs could undergo the same polarization response as normal macrophages with no obvious cellular morphology changes after polarization. What's more, iBMDMs owned stronger phagocytosis and pro-apoptosis functions on tumor cells. In addition, M1-polarized iBMDMs could maintain the anti-tumor phenotypes and domesticated the recruited macrophages of receptor mice, which further improved the TIME and repressed tumor growth. Discussion: iBMDMs can serve as a good object for the function and mechanism study of macrophages and the optional source of macrophage immunotherapy.

7.
Ann Med ; 56(1): 2329130, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38489405

RESUMO

In recent years, the incidence and mortality rates of lymphoma have gradually increased worldwide. Tumorigenesis and drug resistance are closely related to intracellular inflammatory pathways in lymphoma. Therefore, understanding the biological role of inflammatory pathways and their abnormal activation in relation to the development of lymphoma and their selective modulation may open new avenues for targeted therapy of lymphoma. The biological functions of inflammatory pathways are extensive, and they are central hubs for regulating inflammatory responses, immune responses, and the tumour immune microenvironment. However, limited studies have investigated the role of inflammatory pathways in lymphoma development. This review summarizes the relationship between abnormal activation of common inflammatory pathways and lymphoma development to identify precise and efficient targeted therapeutic options for patients with advanced, drug-resistant lymphoma.


Inflammatory pathways directly or indirectly regulate the TME and are closely related to the development of lymphoma.This review was conducted to elucidate the connection between inflammatory pathways and the tumorigenesis and drug resistance of several common lymphomas.Overall, targeting abnormally activated molecules upstream and downstream of lymphoma inflammatory pathways in the future is expected to be a new target for lymphoma treatment.


Assuntos
Linfoma , Humanos , Linfoma/etiologia , Linfoma/metabolismo , Transformação Celular Neoplásica , Microambiente Tumoral
8.
Sci Rep ; 14(1): 7116, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531892

RESUMO

This study aimed to investigate structural synaptic plasticity in the medial prefrontal cortex of rats under treadmill exercise pretreatment or naive conditions in a vascular dementia model, followed by recognition memory performance in a novel object recognition task. In this study, 24 Sprague-Dawley rats were obtained and randomly assigned into 4 groups as follows: control group (Con group, n = 6), vascular dementia (VD group, n = 6), exercise and vascular dementia group (Exe + VD group, n = 6), and exercise group (Exe group, n = 6). Initially, 4 weeks of treadmill exercise intervention was administered to the rats in the Exe + VD and Exe groups. Then, to establish the vascular dementia model, the rats both in the VD and Exe + VD groups were subjected to bilateral common carotids arteries surgery. One week later, open-field task and novel recognition memory task were adopted to evaluate anxiety-like behavior and recognition memory in each group. Then, immunofluorescence and Golgi staining were used to evaluate neuronal number and spine density in the rat medial prefrontal cortex. Transmission electron microscopy was used to observe the synaptic ultrastructure. Finally, microdialysis coupled with high-performance liquid chromatography was used to assess the levels of 5-HT and dopamine in the medial prefrontal cortex. The behavior results showed that 4 weeks of treadmill exercise pretreatment significantly alleviated recognition memory impairment and anxiety-like behavior in VD rats (P < 0.01), while the rats in VD group exhibited impaired recognition memory and anxiety-like behavior when compared with the Con group (P < 0.001). Additionally, NeuN immunostaining results revealed a significant decrease of NeuN-marked neuron in the VD group compared to Con group (P < 0.01), but a significantly increase in this molecular marker was found in the Exe + VD group compared to the Con group (P < 0.01). Golgi staining results showed that the medial prefrontal cortex neurons in the VD group displayed fewer dendritic spines than those in the Con group (P < 0.01), and there were more spines on the dendrites of medial prefrontal cortex cells in Exe + VD rats than in VD rats (P < 0.01). Transmission electron microscopy further revealed that there was a significant reduction of synapses intensity in the medial prefrontal cortex of rats in the VD group when compared with the Con group(P < 0.01), but physical exercise was found to significantly increased synapses intensity in the VD model (P < 0.01). Lastly, the levels of dopamine and 5-HT in the medial prefrontal cortex of rats in the VD group was significantly lower compared to the Con group (P < 0.01), and treadmill exercise was shown to significantly increased the levels of dopamine and 5-HT in the VD rats (P < 0.05). Treadmill exercise pretreatment ameliorated structural synaptic plasticity impairments of medial prefrontal cortex in VD rat and improved recognition memory.


Assuntos
Demência Vascular , Dopamina , Ratos , Animais , Ratos Sprague-Dawley , Serotonina , Plasticidade Neuronal/fisiologia , Transtornos da Memória , Córtex Pré-Frontal , Hipocampo
9.
J Alzheimers Dis Rep ; 8(1): 437-445, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549636

RESUMO

Background: Increasing evidence suggests that both amyloid-ß metabolism disorders in the liver and cerebral hypoperfusion play an important role in the pathogenesis of Alzheimer's disease (AD). However, the relevance of liver function alterations to cerebral blood flow (CBF) of patients with AD remains unclear. Objective: We aimed to investigate the associations between liver function changes and CBF of patients with AD. Methods: We recruited 17 patients with sporadic AD. In addition to physical and neurological examinations, detection of AD biomarkers in cerebrospinal fluid by enzyme-linked immunosorbent assay and CBF assessment by arterial spin labeling sequence of magnetic resonance image scans as well as measure of liver function markers in serum by routine laboratory testing were conducted. Neuropsychological tests were evaluated, including Mini-Mental State Examination and Montreal Cognitive Assessment. Linear and rank correlations were performed to test the associations of liver function alterations with regional CBF of AD. Results: We found that liver function markers, especially total protein, the ratio of albumin to globin, globin, alkaline phosphatase, and aspartate aminotransferase were significantly associated with regional CBF of AD patients. Conclusions: These findings demonstrated significant associations between perfusion in certain brain regions of AD and alterations of liver function markers, particularly proteins and liver enzymes, which might provide implications to the pathogenesis and treatment of AD.

10.
Front Neurosci ; 18: 1364338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486967

RESUMO

In clinical practice and research, the classification and diagnosis of neurological diseases such as Parkinson's Disease (PD) and Multiple System Atrophy (MSA) have long posed a significant challenge. Currently, deep learning, as a cutting-edge technology, has demonstrated immense potential in computer-aided diagnosis of PD and MSA. However, existing methods rely heavily on manually selecting key feature slices and segmenting regions of interest. This not only increases subjectivity and complexity in the classification process but also limits the model's comprehensive analysis of global data features. To address this issue, this paper proposes a novel 3D context-aware modeling framework, named 3D-CAM. It considers 3D contextual information based on an attention mechanism. The framework, utilizing a 2D slicing-based strategy, innovatively integrates a Contextual Information Module and a Location Filtering Module. The Contextual Information Module can be applied to feature maps at any layer, effectively combining features from adjacent slices and utilizing an attention mechanism to focus on crucial features. The Location Filtering Module, on the other hand, is employed in the post-processing phase to filter significant slice segments of classification features. By employing this method in the fully automated classification of PD and MSA, an accuracy of 85.71%, a recall rate of 86.36%, and a precision of 90.48% were achieved. These results not only demonstrates potential for clinical applications, but also provides a novel perspective for medical image diagnosis, thereby offering robust support for accurate diagnosis of neurological diseases.

11.
Food Chem ; 447: 138937, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38492295

RESUMO

Owing to the lack of selection and limited intelligence in mechanical picking, some immature tomatoes that contain alkaloids are thrown away. Tomatine alkaloids are steroidal alkaloids naturally present in Solanaceae plants, which are distributed in small amounts in immature tomato fruits and decrease as the fruits ripen. Tomato glycoalkaloids are harmful to human health. However, in small quantities, there is some evidence that these compounds might be beneficial, as other non-antioxidant bioactivities. This article considers recent research on the biological effects of tomato glycoalkaloids in immature tomatoes, providing reference value for the potential development of these compounds.


Assuntos
Alcaloides , Solanaceae , Solanum lycopersicum , Humanos , Tomatina/toxicidade , Alcaloides/toxicidade , Extratos Vegetais/farmacologia
12.
Br J Anaesth ; 132(5): 877-885, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38429209

RESUMO

BACKGROUND: Quantitative measurement of pupil change has not been assessed against the Richmond Agitation and Sedation Scale (RASS) and spectral edge frequency (SEF) during sedation. The aim of this study was to evaluate pupillometry against these measures in sedated critically ill adult patients. METHODS: In ventilated and sedated patients, pupillary variables were measured by automated pupillometry at each RASS level from -5 to 0 after discontinuation of hypnotics, while processed electroencephalogram variables were displayed continuously and SEF was recorded at each RASS level. Correlations were made between percentage pupillary light reflex (%PLR) and RASS, and between %PLR and SEF. The ability of %PLR to differentiate light sedation (RASS ≥-2), moderate (RASS =-3), and deep sedation (RASS ≤-4) was assessed by areas under receiver operating characteristic (ROC) curves. RESULTS: A total of 163 paired measurements were recorded in 38 patients. With decreasing sedation depth, median %PLR increased progressively from 20% (interquartile range 17-25%) to 36% (interquartile range 33-40%) (P<0.001). Strong correlations were found between %PLR and RASS (Rho=0.635) and between %PLR and SEF (R=0.641). Area under the curve (AUC) of 0.87 with a %PLR threshold of 28% differentiated moderate/light sedation from deep sedation with sensitivity of 83% and specificity of 83%. An AUC of 0.82 with a threshold of 31% distinguished light sedation from moderate/deep sedation with a sensitivity of 81% and a specificity of 75%. CONCLUSIONS: Quantitative assessment of %PLR correlates with other indicators of sedation depth in critically ill patients.


Assuntos
Estado Terminal , Hipnóticos e Sedativos , Adulto , Humanos , Estudos Prospectivos , Sedação Consciente , Eletroencefalografia
13.
Ital J Pediatr ; 50(1): 52, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486257

RESUMO

BACKGROUND: Orthostatic intolerance, which includes vasovagal syncope and postural orthostatic tachycardia syndrome, is common in children and adolescents. Elevated plasma homocysteine levels might participate in the pathogenesis of orthostatic intolerance. This study was designed to analyze the plasma metabolomic profile in orthostatic intolerance children with high levels of plasma homocysteine. METHODS: Plasma samples from 34 orthostatic intolerance children with a plasma homocysteine concentration > 9 µmol/L and 10 healthy children were subjected to ultra-high-pressure liquid chromatography and quadrupole-time-of-flight mass spectrometry analysis. RESULTS: A total of 875 metabolites were identified, 105 of which were significantly differential metabolites. Choline, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine, 1-(1Z-octadecenyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine, histidine, isocitric acid, and DL-glutamic acid and its downstream metabolites were upregulated, whereas 1-palmitoyl-sn-glycero-3-phosphocholine, 1-stearoyl-sn-glycerol 3-phosphocholine, sphingomyelin (d18:1/18:0), betaine aldehyde, hydroxyproline, and gamma-aminobutyric acid were downregulated in the orthostatic intolerance group compared with the control group. All these metabolites were related to choline and glutamate. Heatmap analysis demonstrated a common metabolic pattern of higher choline, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine, and DL-glutamic acid, and lower sphingomyelin (d18:1/18:0), 1-stearoyl-sn-glycerol 3-phosphocholine, and 1-palmitoyl-sn-glycero-3-phosphocholine in patients with certain notable metabolic changes (the special group) than in the other patients (the common group). The maximum upright heart rate, the change in heart rate from the supine to the upright position, and the rate of change in heart rate from the supine to the upright position of vasovagal syncope patients were significantly higher in the special group than in the common group (P < 0.05). Choline, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine, and DL-glutamic acid were positively correlated with the rate of change in heart rate from the supine to the upright position in vasovagal syncope patients (P < 0.05). CONCLUSIONS: The levels of choline-related metabolites and glutamate-related metabolites changed significantly in orthostatic intolerance children with high levels of plasma homocysteine, and these changes were associated with the severity of illness. These results provided new light on the pathogenesis of orthostatic intolerance.


Assuntos
Glicerol/análogos & derivados , Intolerância Ortostática , Fosforilcolina/análogos & derivados , Síncope Vasovagal , Adolescente , Criança , Humanos , Ácido Glutâmico , Glicerilfosforilcolina , Esfingomielinas , Colina , Homocisteína
14.
Sci Rep ; 14(1): 6276, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491102

RESUMO

The morphological, physiological, and biochemical characteristics of leaves result from the long-term adaptation of plants to their environment and are closely related to plant growth and development. In this study, 37 prickly ash germplasm resources from 18 production areas were utilized as the subjects of research. Logistic equations, principal component analysis, and cluster analysis were employed to comprehensively evaluate the leaf traits of prickly ash germplasm resources, with an analysis of their correlation with ecological and geographical factors in the production areas. The results showed that the leaf traits of prickly ash germplasms of different origins are substantially different and diverse. The coefficient of variation for the 14 leaf traits was greater than 10%. The coefficient of variation of the compound leaflet number was the highest among all the considered leaf traits, and the coefficient of variation of leaf thickness was the lowest, at 49.86% and 11.37%, respectively. The leaf traits of the prickly ash germplasm originating from Chongqing in Yongchuan, Chongqing in Rongchang, and Yunnan in Honghe ranked highest, whereas the leaf traits of the prickly ash germplasm from Henan in Jiaozuo, Gansu in Tianshui, and Shanxi in Yuncheng ranked lowest. The results of the correlation analysis showed that among the ecological and geographical factors of the origins, latitude had the strongest correlation with the leaf traits of the prickly ash germplasm. As latitude increased, the leaves of prickly ash gradually decreased in size, weight, and leaf shape index. The factor with the second strongest correlation was temperature. The leaves of the prickly ash germplasm originating from warmer climate areas were larger and heavier than those from areas with colder climates. Altitude and longitude did not significantly affect the leaf traits of the prickly ash germplasm, but at similar latitudes, the leaves of the prickly ash germplasm in high-altitude areas were smaller, and the leaves of the prickly ash germplasm in low-altitude areas were larger. These findings can provide valuable references for breeding and the sustainable utilization of new varieties of prickly ash resources.


Assuntos
Altitude , Melhoramento Vegetal , Humanos , China , Geografia , Folhas de Planta
15.
Environ Int ; 186: 108594, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38527398

RESUMO

The widespread use of copper and tetracycline as growth promoters in the breeding industry poses a potential threat to environmental health. Nevertheless, to the best of our knowledge, the potential adverse effects of copper and tetracycline on the gut microbiota remain unknown. Herein, mice were fed different concentrations of copper and/or tetracycline for 6 weeks to simulate real life-like exposure in the breeding industry. Following the exposure, antibiotic resistance genes (ARGs), potential pathogens, and other pathogenic factors were analyzed in mouse feces. The co-exposure of copper with tetracycline significantly increased the abundance of ARGs and enriched more potential pathogens in the gut of the co-treated mice. Copper and/or tetracycline exposure increased the abundance of bacteria carrying either ARGs, metal resistance genes, or virulence factors, contributing to the widespread dissemination of potentially harmful genes posing a severe risk to public health. Our study provides insights into the effects of copper and tetracycline exposure on the gut resistome and potential pathogens, and our findings can help reduce the risks associated with antibiotic resistance under the One Health framework.


Assuntos
Antibacterianos , Cobre , Microbioma Gastrointestinal , Tetraciclina , Animais , Cobre/toxicidade , Tetraciclina/farmacologia , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Bactérias/efeitos dos fármacos , Bactérias/genética , Fezes/microbiologia
16.
Front Oncol ; 14: 1340872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463235

RESUMO

Objective: At present, the structure of knowledge in the field of childhood thyroid cancer is not clear enough, and scholars lack a sufficient understanding of the developing trends in this field, which has led to a shortage of forward-looking outputs. The purpose of this research is to help scholars construct a complete knowledge framework and identify current challenges, opportunities, and development trends. Methods: We searched the literature in the Web of Science Core Collection database on August 7, 2023 and extracted key information from the top 100 most cited articles, such as the countries, institutions, authors, themes, and keywords. We used bibliometric tools such as bibliometrix, VOSviewer, and CiteSpace for a visualization analysis and Excel for statistical descriptions. Results: The top 100 most cited articles fluctuated over time, and the research was concentrated in European countries, the United States, and Japan, among which scientific research institutions and scholars from the United States made outstanding contributions. Keyword analysis revealed that research has shifted from simple treatment methods for pediatric thyroid cancer (total thyroidectomy) and inducing factors (the Chernobyl power station accident) to the clinical applications of genetic mutations (such as the BRAF and RET genes) and larger-scale genetic changes (mutation studies of the DICER1 gene). The thematic strategy analysis showed an increasing trend towards the popularity of fusion oncogenes, while the popularity of research on traditional treatments and diagnostics has gradually declined. Conclusion: Extensive research has been conducted on the basic problems of pediatric thyroid cancer, and there has been significant outputs in the follow-up and cohort analysis of conventional diagnostic and treatment methods. However, these methods still have certain limitations. Therefore, scholars should focus on exploring fusion genes, the clinical applications of molecular targets, and novel treatment methods. This study provides a strong reference for scholars in this field.

17.
EBioMedicine ; 102: 105082, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531174

RESUMO

BACKGROUND: Having more cognitive activities may prevent dementia, but its evidence of modulating the functional brain network is limited. This randomised controlled trial (RCT) investigated the effect of increased cognitive activity participation on the default mode network (DMN) in older adults who had already been having regular cognitive activity participation and experiencing subjective cognitive decline (SCD). METHODS: Community-living Chinese individuals aged 55-75 years with regular practice of Chinese calligraphy and screened positive for SCD (but negative for mild cognitive impairment or dementia) were randomly allocated to either the intervention or control group. Over 6 months, the intervention group doubled their weekly calligraphy practice time, while the control group maintained their usual amount of practice. The primary outcome was functional connectivities (FCs) of DMN, with pre-specified regions of interest including medial prefrontal cortex (mPFC), inferior parietal lobe (IPL), hippocampal formation (HF), posterior cingulate cortex (PCC), and lateral temporal cortex (LTC). FC changes were compared using repeated measures multivariate analysis of variance (MANOVA). This study is registered at the Chinese Clinical Trial Registry, ChiCTR1900024433. FINDINGS: Between 15 January 2020 and 31 December 2021, 112 individuals consented and completed the baseline assessment. The participants, who had a mean age of 66.3 (SD 4.3) years, with 83 (74%) being women, had been practising calligraphy for an average duration of 9.7 years before enrolment and, in the preceding six months, for an average of 3.1 hours per week. 96 (86%) completed the post-intervention fMRI scan. Significant between-group differences were observed in the FCs between mPFC and right LTC (group difference = 0.25 [95% CI = 0.06-0.44], p = 0.009), mPFC and right IPL (0.23 [0.06-0.39]; p = 0.007), left HF and right LTC (0.28 [0.002-0.57]; p = 0.04), and left HF and right IPL (0.34 [0.09-0.60]; p = 0.009). INTERPRETATION: Our findings, which reveal positive neuromodulatory effects with increased calligraphy practice, highlight the importance of engaging more in cognitive activities in late life for better brain health. FUNDING: Research Grants Council, Hong Kong (grant number 24114519).


Assuntos
Disfunção Cognitiva , Demência , Feminino , Humanos , Idoso , Masculino , Rede de Modo Padrão , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Imageamento por Ressonância Magnética , Cognição
19.
Foods ; 13(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38472847

RESUMO

This study explores the potential of aerotolerant Bacteroides fragilis (B. fragilis) strains as next-generation probiotics (NGPs), focusing on their adaptability in the gastrointestinal environment, safety profile, and probiotic functions. From 23 healthy infant fecal samples, we successfully isolated 56 beneficial B. fragilis strains. Notably, the SNBF-1 strain demonstrated superior cholesterol removal efficiency in HepG2 cells, outshining all other strains by achieving a remarkable reduction in cholesterol by 55.38 ± 2.26%. Comprehensive genotype and phenotype analyses were conducted, including sugar utilization and antibiotic sensitivity tests, leading to the development of an optimized growth medium for SNBF-1. SNBF-1 also demonstrated robust and consistent antioxidant activity, particularly in cell-free extracts, as evidenced by an average oxygen radical absorbance capacity value of 1.061 and a 2,2-diphenyl-1-picrylhydrazyl scavenging ability of 94.53 ± 7.31%. The regulation of carbohydrate metabolism by SNBF-1 was assessed in the insulin-resistant HepG2 cell line. In enzyme inhibition assays, SNBF-1 showed significant α-amylase and α-glucosidase inhibition, with rates of 87.04 ± 2.03% and 37.82 ± 1.36%, respectively. Furthermore, the cell-free supernatant (CFS) of SNBF-1 enhanced glucose consumption and glycogen synthesis in insulin-resistant HepG2 cells, indicating improved cellular energy metabolism. This was consistent with the observation that the CFS of SNBF-1 increased the proliferation of HepG2 cells by 123.77 ± 0.82% compared to that of the control. Overall, this research significantly enhances our understanding of NGPs and their potential therapeutic applications in modulating the gut microbiome.

20.
Foods ; 13(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38397535

RESUMO

Starchy foods are an essential part of people's daily diet. Starch is the primary substance used by plants to store carbohydrates, and it is the primary source of energy for humans and animals. In China, a variety of plants, including edible medicinal plants, such as Pueraria root, yam tuber and coix seed, are rich in starch. However, limited by their inherent properties, kudzu starch and other starches are not suitable for the modern food industry. Natural starch is frequently altered by physical, chemical, or biological means to give it superior qualities to natural starch as it frequently cannot satisfy the demands of industrial manufacturing. Therefore, the deep processing market of modified starch and its products has a great potential. This paper reviews the modification methods which can provide excellent functional, rheological, and processing characteristics for these starches that can be used to improve the physical and chemical properties, texture properties, and edible qualities. This will provide a comprehensive reference for the modification and application of starch from medicinal and edible plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...